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Abstract

Background

Rheumatic diseases are one of the most common chronic diseases worldwide. Among them,
spondyloarthritis (SpA) is a group of highly debilitating diseases, with an early onset age, which
significantly impacts patients’ quality of life, health care systems, and society in general. Recent treatment
options consist of using biologic therapies, and establishing the most beneficial option according to the
patients’ characteristics is a challenge that needs to be overcome. Meanwhile, the emerging availability of
electronic medical records has made necessary the development of methods that can extract insightful
information while handling all the challenges of dealing with complex, real-world data.

Objective
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The aim of this study was to achieve a better understanding of SpA patients’ therapy responses and
identify the predictors that affect them, thereby enabling the prognosis of therapy success or failure.

Methods

A data mining approach based on joint models for the survival analysis of the biologic therapy failure is
proposed, which considers the information of both baseline and time-varying variables extracted from the
electronic medical records of SpA patients from the database, Reuma.pt.

Results

Our results show that being a male, starting biologic therapy at an older age, having a larger time interval
between disease start and initiation of the first biologic drug, and being human leukocyte antigen (HLA)–
B27 positive are indicators of a good prognosis for the biological drug survival; meanwhile, having disease
onset or biologic therapy initiation occur in more recent years, a larger number of education years, and
higher values of C-reactive protein or Bath Ankylosing Spondylitis Functional Index (BASFI) at baseline
are all predictors of a greater risk of failure of the first biologic therapy.

Conclusions

Among this Portuguese subpopulation of SpA patients, those who were male, HLA-B27 positive, and with
a later biologic therapy starting date or a larger time interval between disease start and initiation of the first
biologic therapy showed longer therapy adherence. Joint models proved to be a valuable tool for the
analysis of electronic medical records in the field of rheumatic diseases and may allow for the
identification of potential predictors of biologic therapy failure.

Keywords: data mining, survival analysis, joint models, spondyloarthritis, drug survival, rheumatic
disease, electronic medical records, medical records

Introduction

Motivation

Rheumatic diseases are chronic diseases that, being the leading cause of disability in developed countries,
consume many health and social resources. Among these diseases, spondyloarthritis (SpA) is a group of
several related disorders that can be highly debilitating and significantly impact patients' quality of life,
health care systems, and society [1].

As there is no cure, treatment focuses on the relief of symptoms and the delay of the disease's progression.
Biologic therapies are the most recent approach for treating these disorders, and their use is recommended
when all other methods have failed. However, the therapy selection follows no specific criteria, and trying
to establish which patients benefit the most from each drug is still a problem that needs to be solved [2].

A better understanding of therapy responses for these patients and identifying the predictors that affect
these responses would allow for a prognosis of therapy success or failure and thus be highly valuable in
conserving the resources and time of both patients and medical doctors. Moreover, this understanding
could be used to aid medical experts in tailoring the treatment to the patient by using a more personalized
approach.

Meanwhile, the emerging availability of electronic medical records has enabled the storage of great
amounts of information that can be used to extract insightful knowledge. Data mining is a rapidly growing
field that focuses on developing the techniques necessary for insightfully using this information.

The analysis of an outcome of interest is usually performed using survival analysis methods. such as the
Kaplan-Meier estimator [3] and the Cox model [4]. Nevertheless, these methods are only able to deal with
time-static variables. For dealing with time-varying variables, methods such as the extended Cox model
[5] have been introduced. However, they are not appropriate for dealing with biomarkers [6,7].
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Spondyloarthritis

Joint models have been presented in the literature as a useful approach for handling these types of analysis,
having been used in a wide range of medical studies, including the most common disease areas of cancer
and HIV and AIDS [8].

In the field of rheumatic diseases, these joint modeling and machine learning approaches were studied to
evaluate the clinical impact on flare occurrence in patients undergoing biologic treatments for rheumatoid
arthritis. Both models were proven to assist in decisions on biologic dose reduction with the potential to
reduce the occurrence of flares significantly [9]. The development of juvenile dermatomyositis was also
studied using longitudinal approaches, allowing for a better perception of longitudinal outcomes and a
more accurate comprehension of predictors' effects [10].

However, the use of these methods has been less explored for other diseases in this field, such as SpA.

Our main goal was to propose a data mining approach based on joint models to infer relationships between
time-to-event and longitudinal electronic medical record data, retrieved from the Rheumatic Disease
Portuguese Register (Reuma.pt) [11]. We further aimed to study the predictors of failure of the first
biologic therapy for patients with SpA and verify the applicability of joint models for the study of
therapeutic response in rheumatic diseases.

Background

Spondyloarthritis is the name given to a family of inflammatory rheumatic diseases that
share distinctive pathophysiologic, clinical, radiographic, and genetic features. This includes ankylosing
spondylitis (AS)—the characteristic type of this group—psoriatic arthritis, reactive arthritis, enteropathic
arthritis, and so called undifferentiated SpA.

AS is characterized by chronic inflammation predominantly affecting the axial skeleton. Although its
pathogenesis is poorly understood, there is a strong association between AS and the human leukocyte
antigen B27 (HLA-B27), and the typical age at onset of this condition is at the second or third decade of
life [12].

The first population-based study on rheumatic diseases in Portugal, EpiReumaPt, reported the national
health survey results in 2015, revealing a general SpA prevalence of 1.6% and a prevalence of 2.0% and
1.2% for women and men, respectively [1].

The socioeconomic impact can be rather high for these conditions. A recent study [13] revealed that AS
has a total annual economic impact of €639 million (US $773 million) in Portugal. This value includes the
disease-related costs for the patient and the national health system and the economic impact of the lost
workdays.

Clinical monitoring of a disease is of extreme importance to understanding disease progression, better
assessing patient response to treatment, and guiding therapeutic decisions.

Laboratory exams include erythrocyte sedimentation rate (ESR) and levels of C-reactive protein (CRP),
which are markers of inflammation, and other laboratory data that are considered to show relevant
alterations.

Functional ability can be evaluated using the Bath Ankylosing Spondylitis Functional Index (BASFI) [14]
score, and activity disease can be evaluated using the Bath Ankylosing Disease Status in Ankylosing
Spondylitis (BASDAI) score [15] or the more recently developed Ankylosing Spondylitis Disease Activity
Score (ASDAS) [16]. The ASDAS has two different formulas, ASDAS-CRP (which uses the C-reactive
protein) and ASDAS-ESR (which uses ESR), with ASDAS-CRP usually being the preferred system.

Treatment of SpA should be tailored to the patient, and patient signs, symptoms, and characteristics should
be taken into account, with the most common goal being the attainment of a state of inactive disease.

Treatment options can include physical therapy, nonsteroidal anti-inflammatory drugs, disease-modifying
antirheumatic drugs, and, if patients remain in a high disease activity state when trying the referred
options, treatment with biologic agents, namely tumor necrosis factor inhibitors and interleukin-17 or
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Time-to-Event Analysis

Longitudinal Analysis

interleukin-23 inhibitors.

Survival analysis, or time-to-event analysis, is the collection of statistical
procedures for the analysis in which the outcome variable of interest is the time until an event occurs.

Let T denote a random, nonnegative, continuous variable representing the patient’s survival time and let t
be an observed value of T.

The hazard function can be interpreted as the instantaneous potential per unit time for the event to occur,
given that the individual has survived to time t. It is calculated as follows:

The main feature that distinguishes survival data from other types of data is the possible presence of
censored survival times.

Considering a specific individual i, let T  be the random variable representing its true survival time and C
the potential censoring time. With consideration to right censoring, the censoring indicator variable, δ , is
defined as δ  = I(T  ≤ C ), where I (. ) is the indicator function.

The Cox proportional hazards model [4] allows us to estimate the hazard function and explore how the
survival of a group of patients depends on the values of one or more explanatory variables.

Let x = (x , x , … , x ) be the values of the k explanatory variables of an individual and β = (β , β , …, β )
the vector of its correspondent unknown regression coefficients. The hazard function is given by the
following:

h(t; x) = h  (t)exp (βTx)

where h  (t) is the baseline hazard function, representing the hazard for a patient when its vector of
explanatory variables is equal to zero (x = 0).

It is possible to extend the previously presented Cox model for handling time-dependent variables [5]. This
model is referred to as the extended Cox model. However, it is not theoretically appropriate to deal with
biomarkers since it assumes that the time-dependent variables are predictable processes, measured without
error and with a full path completely known.

Longitudinal data can be defined as the data obtained from multiple measurements
of individuals throughout time.

Linear mixed effects (LME) models are a common way of modeling this data. In an LME model, the
individual’s response is assumed to follow a linear regression model where some of the regression
parameters are population specific and others are patient specific. These are referred to as fixed effects and
random effects, respectively [17].

Let Y  be the n -dimensional response vector for subject i. In general, a linear mixed-effects model satisfies
the following:
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Joint Models for Longitudinal and Time-to-Event Data

where β is a p-dimensional vector that contains the fixed effects; b  is the q-dimensional vector containing
the random effects, and ϵ  is a n -dimensional vector of random errors; X  and Z  are the (n  × p) and (n  ×
q) fixed-effects and random effects design matrices, respectively; D is a (q × q) positive-definite
covariance matrix; and Σ  is a (n  × n ) positive-definite covariance matrix that depends on i through its
dimension n  The ε  is normally distributed with mean zero and covariance matrix D, and b  is normally
distributed with mean zero and covariance matrix Σ . Both b  and ε  are assumed to be independent of each
other and of groups [17].

The basic idea of joint models is to perform
combined analysis, in which a relative risk model is estimated for the time-to-event outcome, taking into
account the effect of the longitudinal data measurements—this is usually done by combining a survival
model with a mixed-effects model [6].

The first step is modeling the continuous longitudinal outcomes with LME models. Let y  denote the (nk
× 1) longitudinal response vector for the k-th outcome (k = 1, … , K) and the i-th subject that is composed
by elements y ,which represent the value of the k-th longitudinal outcome taken at time point t . Let b
be a vector of random effects and β  a vector of fixed effects. We have that the conditional expectation of
y  given b , η  (t) is modeled through the LME model as follows:

where x  (t) and z  (t) are the design vectors for the random and fixed effects, respectively.

Let  be the true event time for the i-th subject. We can now postulate the relative risk model for
the survival process as follows:

where M  (t) = {M  (t), …, M  (t)} and M (t) = {η  (s), 0 ≤ s < t} denotes the history of the true
unobserved longitudinal process up to time point t, h (. ) denotes the baseline risk function, and w (t) is a
vector of exogenous covariates with a corresponding vector of regression coefficients γ. The f  functions,
parametrized by vector α , specify which components of each longitudinal outcome will be present in the
relative risk model, allowing up to L  functional forms for each of K longitudinal outcomes. The
parameters contained in α  quantify the effect of the correspondent underlying longitudinal outcome to the
risk for an event.

One of the basic approaches for the functional form is to model the event's hazard as having an association
only with the current value of the longitudinal outcome at the same time point. Considering a single
outcome, this is given by f{α, w (t), b , M (t)} = αη (t), where α is the strength of association parameter that
indicates the change in the log hazard when there is a unit change in the patient’s longitudinal outcome
value.
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Estimation of joint models is performed by exploiting the full joint likelihood that is derived from the joint
distribution of the longitudinal and survival outcomes. Methods for this estimation can follow, among
others, a frequentist or a Bayesian paradigm [18,19].

Methods

SpA Patients on Biologic Therapies: Data Description and Preprocessing

The data used in this study were retrieved from Reuma.pt [11] on July 22, 2019. This register was
developed by the Portuguese Society of Rheumatology, has been active since June 2008, and contains
information retrieved on a routine basis of rheumatic patients in Portugal receiving biological therapies.
Although Reuma.pt also contains patients with several rheumatic diseases, the focus of this work was on
patients with SpA.

With the data extracted from this database, 4 different data sets, A, B, C and D, were obtained according to
different strategies for handling the missing values. A set of different joint models was then fitted to all
data sets, as well as the equivalent extended Cox models using R software (The R Foundation for
Statistical Computing) [20], namely packages “JM” [18] and “Jmbayes” [19]. This resulted in a total of 49
joint models and 29 extended Cox models. All the steps of the data processing and modeling framework
are described in detail in this section.

The Reuma.pt database contains information regarding patients and patient visits, including identification
data, demographic data, previous medical history, comorbidities, laboratory results, past and current
therapies, adverse events, and disease activity scores, among others.

The follow-up of patients through this registry enables the monitoring of treatment efficacy, safety, and
comorbidities.

The goal of this work was to perform a survival analysis that takes into account both time-independent and
time-dependent variables and understand how these impact the outcome of interest. Therefore, 3 types of
variables were needed: time-independent (baseline) variables, time-dependent variables, and time-to-event
variables. The latter type is not directly found in the database and therefore needed to be processed from
the existing data.

Our event of interest was the failure of the first biological therapy for each patient, where failure was
defined as the discontinuation of the biological therapy due to inefficacy (evaluated by ASDAS) or adverse
events (such as infection or hypersensitivity).

In this context, the time-to-event variables indicated if the biologic therapy failed or if the patient was
censored—henceforth referred to as the failure index. The time until the occurrence of either failure index
is referred to as time to failure.

The data extracted from the database had to go through several preprocessing steps in order to reach a
format compatible with the models to be fitted.

First, a set of variables to be considered was selected, with 3 main aspects being taken into account: level
of missing values, relevance to the study, and variable equivalence. Variables with more than 60% of
values missing were not considered nor were variables that were considered to be irrelevant for the goal of
our study as determined according to the feedback given by medical specialists. Furthermore, some
variables available in the raw data set were equivalent in the sense that they represented the same
information.

After this set of assumptions and processing steps, we obtained our initial data set, which consisted of the
following 3 variables:

1. Time-to-event variables—time to failure and failure index;
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2. Time-independent variables—sex, marital status, year of diagnosis, age at diagnosis, year of disease
beginning, age at disease beginning, year of start of the first biologic therapy, age at start of the first
biologic therapy, years from diagnosis to start of the first biologic therapy, disease years until start of
the first biologic therapy, HLA-B27, employment status before disease, employment status at
baseline, years of education, smoking habits, alcohol consumption habits, weight, height, BMI,
number of pathologies, biologic therapy, concomitant disease-modifying antirheumatic drug at
baseline, concomitant corticoid at baseline, baseline CRP, baseline ESR, baseline BASDAI, baseline
BASFI, and baseline ASDAS;

3. Time-dependent variables—CRP, ESR, BASDAI, BASFI, and ASDAS.

The ASDAS we refer to here and henceforth is the one that incorporates the CRP value into its calculation
and corresponds to the ASDAS-CRP.

A thorough inspection of all variables was made to identify any incomplete or incorrect values. Some
examples of issues that arose were values with incorrect formats or incoherent with these variables’
possible range. If possible, by crossing information and with medical professionals’ help and consultation,
the values were corrected, but whenever it was impossible to draw conclusions, the observations were
eliminated.

In the presented initial data set, not all patients have every baseline variable available. This poses an issue
and is a challenge that needs to be dealt with in most studies that use data from clinical settings. The issue
arises because most methods of variable selection and statistical models cannot handle missing values.
Therefore, to further proceed with our analysis, we needed to understand the different approaches that can
be used to handle this problem according to our needs. Common approaches include performing complete-
case analysis, removing individuals with incomplete data for a subset of covariates, and multiple
imputation techniques.

We decided not to perform any imputation techniques, as the imputation of baseline variables could
introduce a high bias in our models’ estimates.

On the other hand, there is always value in keeping the most amount of data as possible to avoid wasting
relevant information.

As there was no obvious choice regarding which approach would be the most appropriate and to enable the
drawing of valuable insights from the data, the decision to create 4 different data sets, according to
different approaches, was made. Furthermore, this allowed us to study how the strategy for handling
missing data and the resulting data differences can influence the modeling process and the subsequent
results. The overall process for the creation of these data sets is depicted in Figure 1.

The first approach consisted of keeping only the patients for whom all baseline variables were available
(ie, keeping only the complete cases).

The second approach was to consider only the variables with fewer than 40% of missing values and then
keeping the complete cases of those variables. The percentage of 40% was chosen since it seemed to
provide a good balance between the number of eliminated variables and the number of eliminated patients.

The third approach consisted of fitting a univariate Cox model for each initial baseline variable and then
keeping only the statistically significant ones in those models,\ according to a 5% level. After that, the
complete cases of those variables were once again kept.

The last approach was to keep only those variables that were considered clinically relevant by expert
medical doctors’ knowledge and according to insight from literature research where predictors of biologic
drug survival in SpA were studied [21-23].

The variables selected for consideration were sex, disease years to first biologic therapy, age at start of the
first biologic therapy, education years, baseline CRP, baseline BASDAI, and baseline BASFI. Variables
age at start of the first biologic therapy and baseline BASDAI were later dropped due to violation of the

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8367135/figure/figure1/
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proportional hazards assumption.

Statistical Model Implementation

For the initial data set, both an overall survival curve and curves for survival according to the biologic
therapy were fitted with the Kaplan-Meier estimator [3].

Regarding the 4 processed data sets, the same approach was used for all data sets, which proceeded as
follows.

The first step in the analysis was to perform variable selection for the baseline covariates. This removed
any unnecessary predictors that could have added noise to the estimations.

Five different methods were used to compare and study the variability of the obtained results. These were
backward stepwise selection using Akaike information criterion (AIC), forward stepwise selection using
AIC, best subset selection using a primal-dual active set approach, lasso regression, and the stepwise
likelihood ratio variable selection strategy presented by Collett [24].

Despite this, the variables obtained from the stepwise likelihood ratio variable selection were the ones
ultimately selected for the next steps of the analysis, namely for building the survival submodel.

This variable selection was not performed for data set D, as the medical experts selected the variables of
interest for this specific case.

A Cox model for the survival submodel was then fitted using the selected baseline covariates, constituting
the survival submodel.

For each of the time-dependent variables, 7 different LME models were fitted. The one with the better fit
according to AIC and Bayesian information criterion was chosen as the time-dependent submodel.

The formulae of the different LME models fitted and the corresponding names are presented in Table 1.

Having both submodels, the same joint models were fitted with R packages “JM” [18] and “Jmbayes”
[19]. The former estimates the model under a maximum likelihood approach and the latter under a
Bayesian approach, more specifically, using Markov chain Monte Carlo algorithms.

The R package “Jmbayes” also enables the fitting of multivariate joint models. Considering that variables
CPR and ESR are both measurements of inflammation and that ASDAS uses CRP and BASDAI elements
in its composition, we chose not to fit together CRP with ESR or ASDAS with CRP and BASDAI. Thus, 2
different combinations of time-dependent variables were considered for the multivariate joint models:
CRP, BASDAI, and BASFI; and BASFI and ASDAS.

The equivalent models, both univariate and multivariate, were also fitted with an extended Cox model,
which enabled the comparison of both methods.

Should a case arise where the survival submodel contained any of the variables of baseline CRP, baseline
ESR, baseline BASDAI, baseline BASFI, or baseline ASDAS, these baseline variables would be dropped
when the correspondent time-dependent variable was present in the univariate joint model or extended Cox
model. This would enable us to compare the effect of the variable in its baseline form with its time-
dependent form. Similarly, if more than one of the 5 baseline variables were present in the survival
submodel, a multivariate joint model or extended Cox model would also be fitted with those variables in
the time-dependent form, and the baseline form would be dropped from the survival submodel.

The overall process for fitting the joint models and extended Cox models is schematically presented in 
Figure 2 and Figure 3, respectively, where it is also possible to observe the numbers given to the models
that were fitted for every data set.

The exhaustive tests performed attempted to cover several types of strategies and models, and were aimed
at identifying key covariates involved in the prognosis of the disease, particularly in the response to
treatment. Indeed, the rationale for this approach was to comprehensively span the described methods due

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8367135/table/table1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8367135/figure/figure2/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8367135/figure/figure3/
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to the fact that this specific Reuma.pt data set did not contain any prior studies that focused on the
identification of specific markers for the prognosis of the patient’s therapy response.

All the analysis was performed using R software [20], particularly, the “MASS” [25], “BeSS” [26], and
“glmnet” [27] packages for the forward and backward stepwise variable selection, best subset selection,
and lasso regression, respectively. Furthermore “car” [28] was used for multicollinearity testing; “survival”
[29] for the Kaplan-Meier curves, Cox model, extended Cox model, and proportional hazards testing;
“survminer” [30] for the plotting of survival curves; “nlme” [31] for fitting the linear mixed-effects
models; and “JM” [18] and “Jmbayes” [19] for fitting the joint models.

Ethics Approval and Consent To Participate

Reuma.pt was approved by the National Data Protection Board (Comissão Nacional de Protecção de
Dados, Portugal) and by the Ethics Committee of Centro Hospitalar Lisboa Norte, Hospital de Santa
Maria, Lisbon, Portugal. Patients signed Reuma. pt's informed and written consent.

Results

Initial SpA Data Set

The survival probability curve, , of the first biologic therapy for the overall population
from the initial data set obtained with the Kaplan-Meier estimator is presented in Figure 4, where vertical
ticks along the curve indicate censored patients. We can observe that the slope of the curve is higher at the
initial months, indicating that there are more failures closer to the beginning of the therapy.

A comparison of the survival probabilities between the different biologic therapies can be seen in Figure 5,
where it is possible to observe a clear distinction between the different biologic drugs' curves. The P value
of the log-rank test is also presented in the figure, indicating that the biologic drug curves differ
significantly in survival at a 5% level.

A comparison of the survival probabilities between the different biologic therapies can be seen in Figure 5,
where the survival curves for the different biologics were estimated using the Kaplan-Meier method. It is
also possible to observe the P value of the log-rank test, whose null hypothesis is that all the groups have
identical hazard functions. As this value is equal to .03, we can reject this hypothesis at a 5% level of
significance.

The pairwise log-rank tests with corrections for multiple testing were also performed for all pairs of
biologics to better compare the survival of the therapy between biologics. According to the tests, only 1
pair, etanercept and golimumab, had significantly different survival curves. An analysis of the curve
indicates that golimumab conferred better survival than did etanercept at a 5% level of significance.

It should also be noted that in the Portuguese SpA subpopulation studied, there were some biologic drugs
that had a very small number of observations. This difference in number of observations between different
drugs could have also increased the difficulty in properly comparing the survival between them.

Comparison of Results: Data Sets A, B, C, and D

The first main step of the modeling process consisted of selecting the baseline variables of interest.

The comparison of the selected variables only took data sets A, B, and C into consideration. The
percentage of times a variable was selected for each data set, considering the 5 variable selection
approaches tested, is presented in Table 2, along with the average number of times it was selected overall.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8367135/figure/figure4/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8367135/figure/figure5/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8367135/figure/figure5/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8367135/table/table2/
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Although not all variables were present in every data set, the variability in the covariates selected for each
set of data was still noticeable. This indicates that the initial process of handling the missing values and the
initial selection of variables to be considered at this stage have a somewhat elevated influence on the
results that are obtained later; in short, the results are sensitive to the parameter choice. This difference
may be justified by the existence of different variables and even different patients even if many are
common between data sets.

Only 1 variable was selected by all methods and for all data sets where it was considered: years of
education. On average, the variables that were selected in at least more than 50% of the methods used for
variable selection were year of disease onset, age at start of the first biologic therapy, baseline BASFI, and
baseline ASDAS.

Table 3 shows the sign of the coefficient for each of the covariates that were included in the survival
submodel for each data set. The sign of the respective coefficient indicates the effect of this covariate on
the outcome of interest, which we took as the failure of the first biologic therapy. A positive sign indicates
that the variable increases the risk of failure for higher values of that variable (for a continuous variable) or
for that value in comparison to the reference level (for a categorical variable); a negative coefficient
indicates the opposite: a decrease in the risk of failure.

It can be noticed that the sign of the coefficient is coherent between the data sets for all variables even if
the number of data sets where that variable is present differs.

According to the results obtained in the Cox regression, the factors that indicate a good prognosis for the
biologic drug survival were being a male, starting the biologic therapy at an older age, having a larger time
interval between disease start and initiation of the first biologic therapy, and being HLA-B27 positive. On
the contrary, a disease onset or initiation of biologic therapy in more recent years, a higher number of years
of education, and higher values of CRP or BASFI at baseline were all predictors of a greater risk of failure
of the first biologic therapy.

Given the elevated number of models fitted and to aid in the drawing of comprehensive conclusions, 
Table 4 and Table 5 were created to depict the joint and extended Cox models, respectively. For each data
set and for every variable present in the model, the tables show the percentage of models (relative to the
total number of fitted models for each data set) in which the covariate was statistically significant, the
percentage of models in which the variable had a positive regression coefficient, and the percentage of
models in which the variable had a negative regression coefficient. Furthermore, the average of these
percentages was calculated to obtain an overall view of the most common behavior of each variable as
determined by information gathered from all data sets.

This consensus or ensemble approach was conducted to facilitate the identification of the most significant
variables. The rationale is that if a feature always appears as significant, independently of the specific
chosen model, then there is evidence that this feature is associated with the outcome.

Similar reasoning is applicable for identifying the covariates’ effect on the event of interest; that is, its
positive or negative contribution for the risk of the therapy failure.

Focusing on the time-independent variables and starting with the covariate that represents male sex, we
can see that this variable is not statistically significant in any joint or extended Cox model. This is coherent
with what was observed in the Cox model, where sex was not a statistically significant predictor for our
outcome. Regarding the effect of the variable on the event of interest, being male was more frequently a
good predictor of biologic therapy survival than a bad predictor although this ratio was very small for the
joint models.

The year of disease beginning was statistically significant for most models it was present in even if only 1
data set analyzed this variable. Its associated coefficient was positive for all the extended Cox models and
for an average of 92% (12/13) of the joint models, which is consistent with the result obtained in the Cox
models, indicating that patients with a more recent onset of disease have a higher risk of treatment failure.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8367135/table/table3/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8367135/table/table4/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8367135/table/table5/
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The year of start of the first biologic therapy appears as a statistically significant predictor in most joint
models and in all extended Cox models. For the majority of models, biologic therapy initiated in more
recent years appeared to increase the risk of its failure.

The age at the start of the first biologic was statistically significant in most joint and extended Cox models,
and older age at the time of therapy initiation was consistently a predictor of decreased risk of failure.

The year interval between disease beginning and start of the first biologic therapy was only statistically
significant in a small percentage of joint models and showed no significance in any of the extended Cox
models, echoing the results for the Cox model. The coefficient sign for this covariate was coherent among
all models, indicating that a larger year interval reduces the chance of biologic therapy failure.

Being HLA-B27 positive was statistically significant as a predictor for biologic therapy failure in
approximately 80% of all models and was consistently associated with a decreased risk of failure when in
comparison with HLA-B27–negative patients.

The number of years of education showed statistical significance in roughly 90% of all joint and extended
Cox models, and a higher number of education years increased the hazard of biologic therapy failure for all
Cox, extended Cox, and joint models.

The value of CRP at baseline had an associated positive regression coefficient in all joint models and in
80% (4/5) of extended Cox models, indicating an increased risk of failure for higher CRP values, which
was also verified in the Cox model. This covariate was not statistically significant in the Cox regression,
but was significant in approximately 40% of the joint and extended Cox models.

The baseline BASFI was statistically significant in fewer than half of the joint and extended Cox models,
even though it was always statistically significant in the survival submodels fitted with a Cox model. This
variable appeared to be a predictor for increased risk of biologic therapy failure in most joint and extended
Cox models, which is concordant with the Cox models' results.

Regarding the time-dependent variables, we noticed that, for the joint models, variables CRP, ESR,
BASDAI, and ASDAS appeared to be statistically significant in most models. Furthermore, all were
predictors of increased therapy failure for all the joint models that were fitted. Variable BASFI was only
statistically significant in approximately half of the joint models, and the sign of its coefficient also varied
considerably, not showing any clear tendency regarding the effect of this variable on the outcome.

In the extended Cox models, only variables BASDAI and ASDAS were statistically significant for all
models. Variable ESR, BASFI, and CRP showed statistical significance in 75%, 58%, and 38% of the
models, respectively. In all the models, all 5 time-varying covariates were predictors of increased risk of
biologic failure.

Discussion

Principal Results

Overall, the results obtained from the Cox models, extended Cox models, and joint models all indicated
similar effects of the covariates on the treatment outcome.

The biomarkers that indicated a good prognosis for the biologic drug survival were being male, starting
biologic therapy at an older age, having a larger time interval between disease onset and initiation of the
first biologic drug, and being HLA-B27 positive.

Conversely, disease onset or initiation of biologic therapy in more recent years, a greater number of
education years, and higher values of CRP or BASFI at baseline all appeared to be predictors of a greater
risk of failure of the first biologic therapy.

Comparison With Prior Work
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Male sex [22], HLA-B27–positive status [32], and longer disease duration [21] have been reported in the
literature as being good predictors of biologic drug survival, which concurs with the results obtained in the
Cox models of our study. On the other hand, older age at the start of the biologic therapy [32] has been
reported to increase the risk of failure of the therapy, which is contrary to what was found in our data. We
could interpret our result by speculating that older patients are more complacent due to the perceived
efficacy of the therapy or because their symptoms are more intense than those of younger people and thus
the relative improvement of symptoms is more noticeable, therefore increasing their satisfaction levels and
decreasing the chances of therapy switch.

Regarding the predictors that were found to increase the risk of failure in our study, starting treatment in
more recent years [33], and higher values of BASFI at baseline [21] were likewise found to be predictors
of biologic drug discontinuation in research publications. A higher number of education years [23] was
reported in one study as decreasing the risk of therapy failure, which differed from our results. Again, we
could speculate and say that patients with a higher academic level are more comfortable with expressing
their discontent with the lack of therapy response or that they are more aware of new therapeutic options
and for that reason, request a switch of the therapy more often.

Higher values of CRP at baseline were found to increase [34] the hazard of biologic therapy failure in
some publications but to have the opposite effect [23,33] in others.

Limitations

Some limitations of our study include the suboptimal fitting of the longitudinal variables. Therefore, the
choice of the LME function for describing the biomarker trajectories and the different functional forms
available that specify the association between the longitudinal biomarker and the hazard function of the
event should be further explored.

Conclusions

Joint models are statistical models that can analyze both time-static and time-varying variables and
therefore enable the inference of relationships between time-to-event and longitudinal data that are widely
present in electronic medical records.

In this work, this modeling approach was selected to investigate biologic drug survival and its predictors
for SpA patients in Portugal.

Furthermore, the insights obtained throughout the process that culminated in the fitting of these models are
also highly valuable.

This study was the first to use the data of SpA patients from Reuma.pt in this capacity. The entire
preprocessing work performed for enabling the use of Reuma.pt produced a data set that can be used by
researchers who wish to investigate this group of diseases.

The variable selection process appears to be sensitive to this data preprocessing step depending on which
variables and patients are described in the data set.

The tested methods for variable selection yielded quite different results for the same set of data. The
process of selection of covariates should be analyzed carefully, as fully automated methods may not be the
most appropriate ones for establishing which variables should be included in the statistical model. A wise
approach consists of a balance between statistical significance and clinical significance, with the study's
goal always being kept in mind.

We demonstrated that joint models, particularly the functions implemented in the R software packages
“JM” and “Jmbayes,” can be successfully used for the simultaneous analysis of time-to-event and
longitudinal data.
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Health care providers use rheumatic disease progression measures computed from disease activity scores
to shape treatment strategies and improve the quality of life of their patients [35]. However, targeted
treatments that save patients from the potential side effects of high-cost, unsatisfactory treatments require
the identification of biomarkers that can determine which patients can profit from a given therapy [36].
Computational methods using statistical and machine learning methods hold promise for the overall
understanding of rheumatic diseases and can aid in formulating therapeutic strategies and predicting
prognosis and outcome [37,38].

With this study, it was possible to identify the potential predictors of biologic therapy failure for this
Portuguese population of SpA patients. This can aid the prognosis of these rheumatic diseases and
potentially predict the most adequate treatment option according to the patient's characteristics.
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Figure 1

Flowchart representing the overall approach for the preprocessing of the initial data into 4 new data sets: A, B, C,
and D.
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Table 1

Time-dependent functions used given a time-varying variable y. NC represents natural cubic spline
function; β, fixed effects, b, random effects; and t, time.

Model Time-dependent functions

Linear and random intercept β  + β t  + b  + ε

Linear and random slope β  + β t  + b  + b t  + ε

Cubic and random intercept β  + β t    + b  + ε

Cubic and random slope β  + β t    + b  + b t  + ε

Spline and random intercept NC(t , 2, (β , β , β , β ) , (b ) +ε )

Spline and random slope NC(t , 2, (β , β , β , β ) , (b , b )  +ε )

Spline and random spline NC(t , 2, (β , β , β , β ) , (b , b , b , b )  +ε

0 1 ij i0 ij

0 1 ij i0 i0 ij ij
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Figure 2

Flowchart representing the overall approach for the data analysis using univariate and multivariate joint modeling.
The variable selection step is not performed for data set D. ASDAS: Ankylosing Spondylitis Disease Activity
Score; BASDAI: Bath Ankylosing Spondylitis Disease Activity Index; BASFI: Bath Ankylosing Spondylitis
Functional Index; CRP: C-reactive protein; ESR: erythrocyte sedimentation rate. *This model is only fitted for
data set D.
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Figure 3

Flowchart representing the overall approach for the data analysis using univariate and multivariate extended Cox
modeling. The variable selection step is not performed for data set D. ASDAS: Ankylosing Spondylitis Disease
Activity Score; BASDAI: Bath Ankylosing Spondylitis Disease Activity Index; BASFI: Bath Ankylosing
Spondylitis Functional Index; CRP: C-reactive protein; ESR: erythrocyte sedimentation rate. *This model is only
fitted for data set D.
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Figure 4

Kaplan-Meier estimation of the biologic therapy survival curve for the overall population of the initial data set
with the 95% CI [5].
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Figure 5

Kaplan-Meier estimation of the biologic therapy survival curve by biologic drug for the initial data set and P
value of the correspondent log-rank test with the 95% CI [5].
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Figure 6

Coefficient signs of the covariates present in the survival submodels fitted with a Cox regression for data sets A,
B, C, and D. BASFI: Bath Ankylosing Spondylitis Functional Index; CRP, C-reactive protein: HLA-B27, human
leukocyte antigen B27.
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Table 2

Percentage of times a variable was selected for each data set (A, B, C, D) and the average of those
percentages across all data sets.

Open in a separate window

N/A: not applicable.

HLA-B27: human leukocyte antigen B27.

DMARD: disease-modifying antirheumatic drug.

CRP: C-reactive protein.

ESR: erythrocyte sedimentation rate.

Variable

Sex

Marital status

Year of diagnosis

Age at diagnosis

Year of disease onset

Age at disease onset

Year of start of the first biologic therapy

Age at start of the first biologic therapy

Years from diagnosis to start of the first biologic therapy

Disease years until start of the first biologic therapy

HLA-B27

Employment status before disease

Employment status at baseline

Years of education

Smoking

Alcohol

Weight

Height

BMI

Number of pathologies

Biologic

Concomitant DMARD

Concomitant corticoid

Baseline CRP

Baseline ESR

Baseline BASDAI

Baseline BASFI

Baseline ASDAS

b

c

d

e

f

g

h

a

b

c

d

e

f

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8367135/table/table2/?report=objectonly
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BASDAI: Bath Ankylosing Spondylitis Disease Activity Index.

BASFI: Bath Ankylosing Spondylitis Functional Index.

ASDAS: Ankylosing Spondylitis Disease Activity Score.

f

g

h
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Table 3

Coefficient signs of the covariates present in the survival submodels fitted with a Cox regression
for data sets A, B, C, and D.

HLA-B27: human leukocyte antigen B27.

CRP: C-reactive protein.

BASFI: disease-modifying antirheumatic drug.

Variable

Sex

Female (ref)

Male

Year of disease beginning

Year of start of the first biologic therapy

Age at start of the first biologic therapy

Disease years until start of the first biologic therapy

HLA-B27

Years of education

Baseline CRP

Baseline BASFI

a

b

c

a

b

c
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Table 4

Percentage of models in which a variable was statistically significant; percentage of models in
which a variable had a positive coefficient sign; the percentage of models in which a variable had a
negative coefficient sign for the covariates present in the joint models fitted for data sets A, B, C,
and D; and the average of those percentages across all data sets.

ss: percentage of models in which variable is statistically significant.

pos: percentage of models in which variable has positive coefficient.

neg: percentage of models in which variable has negative coefficient.

N/A: not applicable.

HLA-B27: human leukocyte antigen B27.

CRP: C-reactive protein.

BASFI: Bath Ankylosing Spondylitis Functional Index.

ESR: erythrocyte sedimentation rate.

BASDAI: Bath Ankylosing Spondylitis Disease Activity Index.

ASDAS: Ankylosing Spondylitis Disease Activity Score.

Variable Data set (%)

A B C

ss pos neg ss pos neg ss

Male (ref: female) N/A N/A N/A N/A N/A N/A N/A

Year of disease onset N/A N/A N/A N/A N/A N/A 92

Year biologic therapy initiation 82 36 64 83 67 25 N/A

Age at start of the first biologic therapy 82 0 100 N/A N/A N/A N/A

Disease years until start of the first biologic therapy N/A N/A N/A N/A N/A N/A N/A

HLA-B27 N/A N/A N/A N/A N/A N/A 83

Years of education 82 100 0 100 100 0 N/A

Baseline CRP N/A N/A N/A N/A N/A N/A N/A

Baseline BASFI 50 100 0 75 100 0 25

CRP 67 100 0 100 100 0 100

ESR 50 100 0 100 100 0 100

BASDAI 100 100 0 100 100 0 100

BASFI 33 33 66 50 50 50 50

ASDAS 100 100 0 100 100 0 100

a b c

d

e

f

g

h

i

j

a

b

c

d

e

f

g

h

i

j
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Table 5

Percentage of models in which a variable was statistically significant; percentage of models in
which a variable had a positive coefficient sign; and percentage of models in which a variable had a
negative coefficient sign for the covariates present in the extended Cox models fitted for data sets
A, B, C, and D; and average of those percentages across all data sets.

ss: percentage of models in which variable is statistically significant.

pos: percentage of models in which variable has positive coefficient.

neg: percentage of models in which variable has negative coefficient.

N/A: not applicable.

HLA-B27: human leukocyte antigen B27.

CRP: C-reactive protein.

BASFI: Bath Ankylosing Spondylitis Functional Index.

ESR: erythrocyte sedimentation rate.

BASDAI: Bath Ankylosing Spondylitis Disease Activity Index.

ASDAS: Ankylosing Spondylitis Disease Activity Score.

Articles from JMIR Medical Informatics are provided here courtesy of JMIR Publications Inc.

Variable Data set

A B C

ss pos neg ss pos neg ss

Male (ref: female) N/A N/A N/A N/A N/A N/A N/

Year of disease onset N/A N/A N/A N/A N/A N/A 10

Year of biologic therapy initiation 100 100 0 100 100 0 N/

Age at start of the first biologic therapy 86 0 100 N/A N/A N/A N/

Disease years until start of the first biologic therapy N/A N/A N/A N/A N/A N/A N/

HLA-B27 N/A N/A N/A N/A N/A N/A 86

Years of education 100 100 0 100 100 0 N/

Baseline CRP N/A N/A N/A N/A N/A N/A N/

Baseline BASFI 50 100 0 50 100 0 0

CRP 0 100 0 50 100 0 0

ESR 0 100 0 100 100 0 10

BASDAI 100 100 0 100 100 0 10

BASFI 33 100 0 67 100 0 33

ASDAS 100 100 0 100 100 0 10

a b c

d

e

f

g

h

i

j

a

b

c

d

e

f

g

h

i

j


