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Abstract

Background: Patient stratification is a critical task in clinical decision making since it can allow physicians to choose
treatments in a personalized way. Given the increasing availability of electronic medical records (EMRs) with
longitudinal data, one crucial problem is how to efficiently cluster the patients based on the temporal information
from medical appointments. In this work, we propose applying the Temporal Needleman-Wunsch (TNW) algorithm to
align discrete sequences with the transition time information between symbols. These symbols may correspond to a
patient’s current therapy, their overall health status, or any other discrete state. The transition time information
represents the duration of each of those states. The obtained TNW pairwise scores are then used to perform
hierarchical clustering. To find the best number of clusters and assess their stability, a resampling technique is applied.

Results: We propose the AliClu, a novel tool for clustering temporal clinical data based on the TNW algorithm
coupled with clustering validity assessments through bootstrapping. The AliClu was applied for the analysis of the
rheumatoid arthritis EMRs obtained from the Portuguese database of rheumatologic patient visits (Reuma.pt). In
particular, the AliClu was used for the analysis of therapy switches, which were coded as letters corresponding to
biologic drugs and included their durations before each change occurred. The obtained optimized clusters allow one
to stratify the patients based on their temporal therapy profiles and to support the identification of common features
for those groups.

Conclusions: The AliClu is a promising computational strategy to analyse longitudinal patient data by providing
validated clusters and by unravelling the patterns that exist in clinical outcomes. Patient stratification is performed in
an automatic or semi-automatic way, allowing one to tune the alignment, clustering, and validation parameters. The
AliClu is freely available at https://github.com/sysbiomed/AliClu.
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Background
The increasing availability of clinical data and the
increased investments in healthcare are driving research
on building better clinical decision support systems for
the effective personalization of treatments. In this con-
text, machine learning and data mining techniques are
becoming ubiquitous, helping to provide high-quality care
systems and improve the long-term health of patients.
Patients’ health records are being stored in electronic

medical records (EMRs) and consist of a variety of data,
such as demographics, medical history, laboratory test
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results, medications, and allergies. These EMR systems
are designed to store patients’ data across time, thereby
providing large longitudinal cohorts. Exploring the dis-
ease heterogeneity and patterns in these datasets is a
challenging task. Several issues contribute to this diffi-
culty of this task: the exponential number of all possi-
ble combinations in patients’ trajectories, the variability
in their temporal scales, and the complexity of their
representations.
We address the problem of learning temporal patterns

in EMR data by using a combined approach of (tempo-
ral) alignment and hierarchical clustering. More specifi-
cally, we use the Temporal Needleman-Wunsch (TNW)
algorithm [1] to align discrete sequences with the time
information between symbols and, subsequently, perform
hierarchical clustering using the obtained pairwise scores.
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The TNW algorithm is an extension of the traditional
Needleman-Wunsch (NW) [2] for global sequence align-
ment. The TNW takes into account the matches between
symbols, as in the NW algorithm, and also adds a penal-
ization term for the differences in the time values between
two sequences. Other temporal alignment methods, such
as dynamic time warping, are not adequate for dealing
with these type of data, and they just provide general
trends for matching continuous-time signals [3–6].
The TNW is particularly interesting when utilizing data

representing given events or states (coded as symbols) and
their corresponding durations. Treatment switching pro-
vides us with an excellent example of this type of temporal
sequence data. Starting at instant 0 with Treatment A, its
failure after tA may lead to switching to Treatment B with
a duration of tB, and then switching again to Treatment F,
which is still ongoing (tF represents that duration). In this
case, wewould have a patient profile given by the sequence

0.A, tA.B, tB.F , tF .Z,

which includes symbols and numeric values and where
Z is a special symbol representing that the last therapy
has not yet failed. It is worth noting that the discrete
states (A, B and F in this example) can also be obtained
through the discretization of the continuous features.
Additionally, the times representing the durations of the
states are completely general with the only restriction
being that they are measured at the same scale for all
patients.
State-of-the-art alignment approaches usually involve

multiple sequence alignment techniques that use the pro-
gressive alignment heuristic: they are fast, scalable and
widely used. The most popular methods include Clustal
Omega [7], MAFFT [8], andMUSCLE [9]. These methods
were essentially developed for aligning DNA or protein
sequences, which are time-invariant sequences composed
by letters.
In this work, we focus specifically on using the temporal

information present in clinical data for pairwise sequence
alignment. In this regard, the literature includes mostly
alignment algorithms for continuous time series data [4–
6]. A very well known approach is Dynamic Time Warp-
ing (DTW) [3], which warps the time axis of the sequences
to achieve alignment. It is also based on dynamic pro-
gramming, such as the NW algorithm [2], but it does
not incorporate a gap penalty. Pairwise alignment using
HiddenMarkovModels (HMMs) also constitutes an alter-
native [10]; however, it is not trivial to directly include
temporal data.
Motivated by the need for a sequence alignmentmethod

that can assess the similarity between two sequences
in the same way as the NW or HMM does while also
accounting for the time that elapses between events, Syed

and Das developed the TNW algorithm [1] that can be
applied to healthcare data to find similar patients based
on medical histories.
An alternative approach could be simply applying tradi-

tional sequence alignments such as the NW to sequences
after some pre-processing step. This step would account
for the temporal information between events by repeat-
ing an event several times to create the sequences to
be aligned. For example, the temporal sequence "0.A,5.B"
could be transformed to "AAAAAB", where the five As in
the latter sequence represent the five units of time that
elapsed from "A" to "B". Then, the NW algorithm can be
applied. Several drawbacks exist in this approach; namely,
the need to divide the time intervals between events
in windows and the longer sequences that are created,
thus increasing the computational time of the alignments.
The TNW algorithm overcomes these issues and does
not require any additional transformation of the original
data. The absence of related works in the literature on
this algorithm motivated us to test it on the Reuma.pt
dataset [11].
The main goal of this work is to obtain clusters of

patients by analysing longitudinal medical data specifi-
cally, clinical data. Clustering patients with similar treat-
ment profiles would allow for identifying the common fea-
tures of those groups and delineate strategies to improve
treatment outcomes.
In the literature, several studies are found that try to

achieve the same objective. In [12], Docampo et al. present
a cluster analysis of clinical data to identify fibromyalgia
subgroups. Their approach is a two-step clustering pro-
cess. In the first step, the clinical variables are clustered by
using partitioning around medoids. The number of clus-
ters is found by using silhouette plots and Calinski’s index.
In the second step, synthetic patient indices are calculated
for each sample and dimension in order to find the patient
subgroups.
In another work [13], Garg et al. proposed two tech-

niques based on survival trees to cluster patients into
clinically meaningful groups according to their expected
lengths of stay. Their techniques are more applicable to
survival analysis using survival data.
In [14], the authors investigated if subgroups of patients

with non-specific lower back pain could be identified by
applying hierarchical cluster analysis to a dataset that con-
tained 6-month clinical courses of patients with measure-
ments of bothersomeness. An initial step was required
before using the clustering algorithm, which consisted
of condensing the courses of each patient based on four
parameters. These parameters were obtained by fitting a
regression line in the courses and computing the slopes
and intersections. After the parameters were defined
for each patient, hierarchical clustering utilizing Ward’s
method was applied. In order to determine the optimal
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number of clusters, they analysed the resulting dendro-
grams with Calinski’s criterion, which was also used in
[12]. Regarding the results, four clusters were found with
distinct clinical courses, which showed that it is possible
to find clinical meaningful clusters based on the tempo-
ral evolution of the variable under study. Note that, in this
work, the temporal information betweenmeasurements is
not directly used, but we estimate the parameters of a line
that is fit for the clinical courses.
In addition to the clustering approaches discussed

before, a model-based clustering method was proposed
for clustering individuals based on measurements taken
over time [15]. The authors apply their method to data
from pregnant women to identify hormone trajectories.
One important aspect of this approach is that the method
requires the specification of the number of clusters to be
fit to themodel. In their work, it was known that data were
divided into two groups; hence, they knew the number of
clusters to select.
However, this number was also confirmed by the

Bayesian information criterion that they used to choose
the number of clusters.
To the best of our knowledge, the AliClu is a novel

approach for addressing this type of mixed, longitudinal
data that takes into account both the sequence of states
and their durations. The TNW algorithm allows one to
align similar medical histories by considering the tem-
poral information and also penalising missing events by
inserting gaps. Furthermore, the AliClu provides cluster-
ing validation using bootstrapping, which allows one to
tune the input parameters to find the best number of clus-
ters and to identify the most homogeneous patient strata.
The AliClu is fully implemented and freely available for
further applications.

Implementation
The pipeline of the proposed method, which is named the
AliClu, is illustrated in Fig. 1. In the first step, the com-
plete raw data are pre-processed to obtain the temporal
sequences. Then, in the second step, pairwise tempo-
ral sequence alignment is performed, and a similarity
matrix is obtained. The third step consists of converting
the similarity matrix into distances. Agglomerative clus-
tering is then performed by using this distance matrix,
and finally, the clustering results are validated via a
bootstrapping approach. The obtained patient stratifica-
tion can be graphically represented to ease the clinical
interpretation. Each step of this pipeline is detailed as
follows.

Data pre-processing
This pre-processing step creates temporal sequences for
each patient from EMRs. Patients’ records are typically
available in panel data format, in which each patient is

spread in different lines, one for each medical appoint-
ment, and the columns contain the features of interest
measured over time. In this work, we consider that each
patient experiences a sequence of events over time. Let A
and B be the events of interest for a given patient with the
time-distance t between them, and a prefix-encoded (PE)
sequence for that patient is defined as 0.A, t.B.
In this pre-processing phase, the PE sequences are built

for each patient, requiring information about the patient’s
ID, the event under study, and the time between two con-
secutive events. These features must be taken from the
panel data. In the data set, the time may be formatted as
a date or just a number in any time unit (e.g., seconds,
minutes, or days). Depending on the time format, two
types of pre-processing steps are implemented. We refer
the interested reader to the Additional file 1 for further
details.

Temporal sequence alignment
After building the prefix-encoded (PE) sequences, it is
possible to align all patient pairs using the TNW algo-
rithm [1]. The TNW guarantees convergence to the opti-
mal alignment for a given scoring scheme, gap penalty
g, and temporal penalty Tp. Notwithstanding, alignments
can drastically change depending on the choice of these
parameters, and this is the reason why they should be
carefully chosen.
The information of the retrieved alignments is summa-

rized into an N × N similarity matrix S, where N is the
number of patients in the data. In this matrix, the entry
value (i, j) gives the alignment score of the i-th and j-th
patients. Due to symmetry, only N × (N − 1)/2 entries
need to be computed.

Distance matrix
Before using the agglomerative clustering algorithm, we
need to convert the similarity matrix S, which was
obtained in the previous step, into a distance matrix D. To
this end, we take the symmetric value of each score and
then we shift it by adding the maximum similarity score
in matrix S. This shift is made in order to make all scores
greater than or equal to zero. In summary, the distance
matrix is computed as follows: a = maxi<j Sij with i, j =
1, . . . ,N and D = −S+a

(
1 · 1T)

with 1 =
(

1...
1

)

∈ RN .

Clustering of temporal sequence alignments
The dissimilarity matrix obtained is then used to perform
agglomerative clustering [16]. The resulting groups can
be depicted in a dendrogram, a tree showing the order
and distances of the merges performed during the cluster-
ing procedure. Five different linkage functions are used,
namely, single, complete, average, centroid, and Ward’s
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Fig. 1 The proposed AliClu approach. First, raw data is pre-processed to obtain PE sequences. Then, pairwise sequence alignment is performed and
a similarity matrix S is obtained. Next, S is converted into a distance matrix D. Agglomerative clustering is then performed with this distance matrix D.
Validation of the clustering results is accomplished via a bootstrapping approach. In the end, retrieved clusters are analysed by the clinicians

method. Since hierarchical clustering methods do not
explicitly set the number of clusters, the AliClu addition-
ally provides an automatic bootstrapping-based validation
technique proposed by Mucha [17] that selects the best
number according to several clustering indices. These
indices include Rand [18], the adjusted Rand (AR) [19],
Fowlkes and Mallows (FM) [20], Jaccard, and the adjusted
Wallace (AW) [21].
The pseudo-code of the cluster and validation proce-

dure is given in Algorithm 1. The inputs of the algorithm
are the distance matrix D for the agglomerative clustering
algorithm, the number of bootstrap samples M, the link-
age criterion L, and the minimum Kmin and the maximum
Kmax numbers of clusters to be analysed. The output is
the statistics of all the clustering indices described above,
namely, the medians, means, and variances for all the
bootstrap samples, which are calculated for each analysed
number of clusters (between Kmin and Kmax).
The algorithm begins by performing agglomerative

clustering on distance matrix D in Step 1. Then, an outer
loop starts in Step 2, corresponding to a bootstrapping
procedure. From Steps 3 to 5, a bootstrapped sample is
generated, and agglomerative clustering is performed on
it. Then, an inner loop computes the clustering indices
between the clustering of the original patients and the
clustering of the bootstrapped sample (Steps 6-10). In
Step 8, the obtained dendrograms Z and Z′ are cut to

Algorithm 1 Agglomerative clustering
1: Perform agglomerative clustering on distance matrix

D, outputing a dendrogram Z.
2: RepeatM times:
3: - Bootstrap sample – randomly select 3

4 patients
from the original data.

4: - Create a new distance matrix D′ for the bootstrap
sample.

5: - Perform agglomerative clustering on D′ with L
which outputs a dendrogram Z′.

6: - Let q = Kmin.
7: While q ≤ Kmax:
8: - Cut dendrograms Z and Z′ in order to obtain q

clusters in each.
9: - Compute Rand, AR, FM, Jaccard, and AW

between the original and bootstrap partition.
10: - Let q = q + 1.
11: Evaluate statistics of the M computations for each

analysed q.

retrieve q clusters (in each), where Kmin ≤ q ≤ Kmax.
After running the outer loopM times, the statistics of the
clustering indices are computed (Step 11).
The output of Algorithm 1 helps to select the best num-

ber of clusters in the data, herein k. The right candidate is
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the one that yields the higher number of maximum aver-
age values over the clustering indices. To corroborate the
previous guess, the standard deviation of the clustering
indices for each k can be taken into account. The choice of
k can be automatic or semi-automatic. In this latter case,
the results composed by dendrograms, the averages and
the standard deviations of the obtained clustering indices
are given to the user for manual inspection and further
selection.
After obtaining the best number of clusters k accord-

ing to these criteria, the stability of each individual cluster
is then assessed in Algorithm 2, again via the boot-
strapping approach [17]. The inputs of this algorithm
are the number of clusters k, the clusters themselves
{A1, . . . ,Ak}, the linkage criterion L, and the number of
bootstrapped samples M. The output is the stability mea-
sures of the obtained clusters, which are assessed by the
criteria described as follows.

Algorithm 2 Cluster stability assessment
1: RepeatM times:
2: - Bootstrap sample – randomly select 3

4 patients from the original data.

3: - Create a new distance matrix D′ for the bootstrap sample.
4: - Perform agglomerative clustering on D′ with L, which outputs a

dendrogram Z′ .
5: - Obtain a collection of k clusters {B1, . . . ,Bk} by cutting the dendro-

gram Z′ .
6: - Let j = 1.
7: While j ≤ k:
8: - Let τ ∗

j = maxi=1,...,k τ(Aj ,Bi).
9: - Let γ ∗

j = maxi=1,...,k γ (Aj ,Bi).
10: - Let η∗

j = maxi=1,...,k η(Aj ,Bi).
11: - Let j = j + 1.
12: Evaluate statistics of theM computations for each analyzed cluster.

The algorithm starts with resampling. For each boot-
strapped sample, a dendrogramZ′ is obtained by perform-
ing agglomerative clustering on the sample (Steps 2-4).
Then, a collection of k clusters {B1, . . . ,Bk} is obtained
by cutting the dendrogram Z′ (Step 5). From Steps 6
to 11, as proposed by Mucha [17], three different mea-
sures are computed for each cluster Aj, 1 ≤ j ≤ k,
namely, τ ∗

j (the Jaccard index), γ ∗
j (the recovery rate) and

η∗
j (the Dice coefficient). These indices provide a mea-

sure of the similarity between cluster Aj and its most
similar cluster in {B1, . . . ,Bk}. Finally, in Step 12, the sta-
bility of the retrieved clusters is assessed by computing
the average values of τ ∗

j , γ ∗
j and η∗

j , and by analysing the
corresponding standard deviations.
As discussed in [17], it is difficult to set an appropriate

threshold that denotes that a cluster is stable. Therefore,
we followed the rule of thumb and considered stable clus-
ters as the ones that yield high average values (close to
one) and low standard deviations for τ ∗

j , γ ∗
j and η∗

j .
Algorithm 3 presents the overall proposed method for

obtaining clusters from PE sequences. Its inputs are the

raw data, the scoring system SS, the temporal penalty
Tp, and the gap related parameters (gmin, gmax and gistep)
required by the TNW; the number of bootstrapped sam-
ples M, for Algorithm 1 and Algorithm 2; the linkage
criterion L; and the minimum Kmin and the maximum
Kmax numbers of clusters.

Algorithm 3 AliClu
1: Pre-process raw data to obtain PE sequences.
2: Let g = gmin.
3: While g ≤ gmax:
4: - Perform pairwise alignment using TNW algorithm with PE

sequences, SS, Tp and g as input.
5: - Convert similarity matrix S into a distance matrix D.
6: - Run Algorithm 1 with D,M, L, Kmin, and Kmax as input.
7: - Let g = g + gistep .
8: Perform consensus decision on the number of clusters given the results

from different gaps g.
9: Run Algorithm 2 to assess cluster stability with the best k clusters

{A1, . . . ,Ak}, L, and andM as input.

The initial step of the algorithm pre-processes the raw
data to produce PE sequences (Step 1). The gap penalty
of the TNW algorithm is then set to range from gmin to
gmax at incremental steps of gistep (Step 2 and Step 7).
For each value of the gap penalty g, pairwise temporal
alignment using the TNW is performed, which outputs a
similarity matrix S (Step 4). Then, S is converted into a
distance matrix D (Step 5). Clustering is then performed
by running Algorithm 1 (Step 6).
When the cycle from Steps 3 to 7 ends, there are several

results to explore: one for each of the number of clus-
ters (Kmin,. . . , Kmax) and gap penalties (gmin to gmax with
gistep). In Step 8, the final number of clusters k is obtained
from these results. As stated before, if an automatic proce-
dure is chosen, the final number of clusters k retrieved in
this step is that which results in the most frequent higher
average values for the clustering indices. In this case, the
chosen gap penalty g is the one that yields the best aver-
age values for the clustering indices for the final number
of clusters. In the semi-automatic option, the full results
for different k and g – including the dendrograms, aver-
ages and standard deviations of the clustering indices –
are provided to the user, which then determines the final
number of clusters k and gap parameter g to be further
used. In Step 9, the stability of the retrieved clusters is
assessed by running Algorithm 2.
The run-time complexity of the TNW isO(n2), and that

of agglomerative clustering isO(N3), where n is the length
of the PE sequences andN is the number of patients in the
data. Moreover, computing the cluster stability in Algo-
rithm 2 for Steps 6–11 takes O(K2

max × N). Therefore, the
AliClu algorithm takes

O(�G× n2 + �G×M × �K ×N3 +M ×K2
max ×N)
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Fig. 2 Percentage of biologic drugs taken by Rheumatoid Arthritis (RA) patients. Almost 60% of the patients only had one biologic drug. Patients that
have taken more than five biologic drugs are rare; three patients have taken five, two patients have taken six, and other two seven biologic drugs

time, where �G =
⌈
gmax−gmin+1

gistep

⌉
is the number of gaps

analysed (gmin to gmax with gistep), M is the number of
bootstrapped samples, and �K = Kmax − Kmin + 1
is the number of clusters considered (from Kmin to
Kmax).

Results
Synthetic datasets
We first evaluate the AliClu using synthetic datasets,
which provides a proof of concept in a controlled sce-
nario where the true cluster labels are known a priori and

Fig. 3 Dendrogram of the agglomerative hierarchical clustering of Rheumatoid Arthritis (RA) patients. Dendrogram of Ward’s method hierarchical
clustering with gap penalty g = 0.7 and temporal penalty Tp = 0.25. Twenty five clusters were selected based on the analysis of the clustering
indices and clinical interpretation
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Table 1 Average values of five clustering indices for the
dendrogram of Fig. 3

k Rand AR FM Jaccard AW

2 0.876 0.744 0.897 0.827 0.704

3 0.852 0.675 0.789 0.658 0.661

4 0.872 0.689 0.780 0.644 0.644

5 0.897 0.705 0.773 0.632 0.759

6 0.920 0.751 0.802 0.672 0.768

7 0.935 0.780 0.820 0.699 0.771

8 0.931 0.753 0.796 0.662 0.700

9 0.950 0.801 0.830 0.712 0.782

10 0.966 0.855 0.875 0.779 0.861

11 0.969 0.863 0.881 0.789 0.857

12 0.973 0.876 0.892 0.805 0.878

13 0.975 0.883 0.897 0.814 0.883

14 0.979 0.897 0.909 0.833 0.914

15 0.982 0.910 0.920 0.852 0.917

16 0.985 0.925 0.933 0.875 0.931

17 0.987 0.932 0.940 0.887 0.937

18 0.988 0.936 0.943 0.893 0.939

19 0.989 0.940 0.946 0.899 0.944

20 0.988 0.937 0.943 0.893 0.933

21 0.989 0.938 0.945 0.895 0.939

22 0.990 0.942 0.948 0.901 0.940

23 0.991 0.946 0.951 0.907 0.961

24 0.992 0.953 0.958 0.919 0.965

25 0.993 0.958 0.962 0.926 0.966

26 0.993 0.959 0.963 0.929 0.964

27 0.993 0.958 0.962 0.928 0.960

28 0.992 0.955 0.959 0.923 0.952

29 0.992 0.952 0.957 0.920 0.945

30 0.991 0.940 0.947 0.903 0.924

makes it easy to determine the merits of the method. The
synthetic datasets consisted of temporal sequences gen-
erated by continuous-time Markov chains in a variety of
parameter settings.
We concluded that the AliClu successfully found the

correct clusters in more than 80% of the cases for datasets
containing two well-separated clusters. Moreover, the
linkage method that produced the best results for the
agglomerative clustering was Ward’s method; thus, it was
adopted in the remaining experiments. The complete
study of the AliClu behaviour on each of the synthetic
problems is available in the Additional file 1, along with all
the details regarding the sequence generation and cluster-
ing evaluation.

The Reuma.pt database
We then applied the AliClu to biologic therapy switching
for rheumatoid arthritis (RA) patients in a real-life longi-
tudinal cohort – the Reuma.pt database [11].
Reuma.pt [11] is a Portuguese nationwide database

developed by the Portuguese Society of Rheumatology.
It stores the EMRs of rheumatoid patients as struc-
tured and narrative data with the goal of monitoring
the disease’s progression and assuring treatment effec-
tiveness and safety. In this study, we focus on patients
with rheumatoid arthritis (RA) being treated with biologic
therapies at one centre. The retrieved data include 426
patients diagnosed with RA who followed-up regularly
more or less every three to six months, which resulted in
a total of 9305 medical appointments.
The RA is an immunomediated inflammatory

rheumatic disease that causes pain and swelling in
the wrists and small joints of the hands and feet. RA
treatments can mitigate these symptoms, prevent
joint damage, and provide a better quality of life to
the patients. Traditional therapies consist of using
conventional disease-modifying antirheumatic drugs
(DMARDs), which are used as a monotherapy or in
combinations. When patients fail to respond to conven-
tional DMARDs, modern biologic therapies are tried.
Unlike conventional DMARDs, biologic ones are made
using biotechnology. Biologics are genetically engi-
neered to act as natural proteins in the human immune
system.
The goal of RA treatment is to induce the disease’s

remission by controlling the inflammation. This approach
would relieve the symptoms, prevent joint and organ dam-
age, improve physical functioning and overall well-being,
and reduce long-term complications. It is crucial to iden-
tify the most effective RA treatments early in the disease’s
progression. In this regard, we used the AliClu to analyse
biologic therapy switching, where PE sequences are built
by interspersing biologic drugs that are coded as letters
and include their durations. The optimized clusters allow
for the stratification of RA patients based on their tempo-
ral therapy profiles and identification of common features
of these groups. Patients starting new biologic therapies
can then benefit from these insights.

Clustering of biologic therapy switches
Data of the 426 RA patients concerning biologic ther-
apy switches from the Reuma.pt database were prepro-
cessed to build the PE sequences. Figure 2 presents the
statistics regarding the number of biologic drugs taken
by patients. Almost 60% of the patients had only one
biologic drug recorded (no switches). Patients who have
taken five or more drugs are rare: three patients have
taken five, two have taken six, and two have taken
seven different treatments. We stress that when switching
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therapies, a patient never goes back to taking the previous
biologic drug.
For this particular dataset, the following drugs were

as follows: A – etanercept, B – infliximab, C – ritux-
imab, D – adalimumab, E – anacinra, F – abatacept, G –
tocilizumab, andH– golimumab. These drugs correspond
to distinct active therapeutic principles and are prescribed
in different stages of the disease.
Having the PE sequences, Algorithm 3 is run with

Kmax = 30, and all other input parameters are set to
their default values. The scoring system is 1 for a match
and −1.1 for a mismatch of the drug representation,
the temporal penalty is Tp = 0.25, and the number of
bootstrapped samples is M = 1000. Moreover, in this
experiment, the AliClu is used in a semi-automatic man-
ner (Step 12 of Algorithm 1 and Step 8 of Algorithm 3 are
subject to user input).
We concluded that Ward’s linkage leads to superior

results in terms of the clustering indices and clinical infor-
mation, and a gap penalty of g = 0.7 and a temporal
penalty of Tp = 0.25 correspond to balanced choices
with respect to the other input parameters. It is notewor-
thy that these choices are data dependent and provide a
proof-of-concept of the principle since a full analysis and
optimization of the clustering parameters would be out of
the scope of the present work.
The running time recorded for this final setting was

approximately 1 hour by using a machine with a 2.6 GHz
Intel Core i7 processor and 16 GB of 2400 MHz DDR4
memory. This time corresponds to approximately 3.8
seconds for each gap and replicate analysed for the full
range of cluster numbers.
Figure 3 shows the dendrogram obtained when using

this parameter set, i.e., g = 0.7 and a temporal penalty
of Tp = 0.25. The averages of the five clustering indices
obtained with Algorithm 1 are presented in Table 1.
Three of themeasures, namely, the AR, FM, and Jaccard,

indicate the existence of 26 clusters; the AW indicates that
k = 25, and the AR indicates that k = 25, 26 and 27.
In this case, not all averages point to the same number of
clusters k; therefore, a more careful and refined analysis is
required.
We complemented this analysis with the standard devia-

tion of the AR, which is presented in Fig. 4. The minimum
standard deviation of the AR is achieved for k = 25,
which, combined with the information provided in Table 1
and Fig. 4, leads to the selection of 25 clusters.
The stability of the 25 clusters was then assessed

through the medians, averages and standard deviations of
η∗, τ ∗ and γ ∗ (Table 2). As expected, the three statistic
values of η∗ are always smaller than those of τ ∗ and γ ∗.
For some clusters, the medians and averages of the three
measures are not as high as is desirable to consider the
clusters stable. Moreover, the medians and averages of τ ∗

and γ ∗ are not the same in all clusters. Notwithstanding,
in clusters 20, 21, 22, 23, 24, and 25 (also those with more
observations), those values are the same, and they are high
enough to be considered stable.

Clusters visualization
Visualization is an essential task in any clustering pro-
cess since it provides an intuitive way to validate clusters.
Due to the characteristics of the clustered PE sequences,
we propose a graph representation that summarizes the
information regarding the sequences that belong to a
given cluster. Therein, each node represents a biologic
drug symbol (“A” to “H”, and “Z” described above), and
each edge represents a therapy switch (from one bio-
logic drug to another). A special symbol “Z” marks the
end of the sequence, signalling that from that point on
there is no information regarding the therapy’s success
or failure. The value on an edge is the median of the
times between the corresponding drug switches in that
cluster.
The colour of an edge represents the transition proba-

bility from one biologic drug to another. This probability
is computed by counting the number of times a switch
occurs divided by the total number of transitions in that
cluster. A grey scale is used for the edges in this regard. A
darker edge means that the switches between the linked
biologic drugs frequently occurred in that cluster.
The clusters with higher stability correspond to eas-

ily interpretable therapy profiles, including monothera-
pies (no switches). For example, these include clusters
with only etanercept (A; Cluster 25 – 101 patients), only
infliximab (B; Cluster 24 – 46 patients), or minor or no
switches for the majority of the patients in that group.
For example, cluster with adalimumab (D; Cluster 23 – 37
patients) where some patients switch to golimumab (H),
and vice-versa (Cluster 20 – 19 These clusters are rep-
resented in Fig. 5. Less stable clusters may also provide
relevant clinical information regarding the longitudinal
profile of the therapy. For example, Cluster 14 (with 10
patients), defines a more elaborate structure of therapy
switches, which corresponds to a more complex medi-
cal interpretation. Patients started with a TNF inhibitor
agent (etanercept, A). If the patient’s therapy failed (sec-
ondary failure) after some time, then the patient can
be switched to a new TNF inhibitor (adalimumab, D).
After two TNF inhibitor agents failed, the patients were
switched to another class of drugs. The next drug can be
either a B cell antibody (rituximab, C) or an IL-6 inhibitor
(tocilizumab, G). Sometimes, patients do not respond at
all to the first TNF inhibitor agent (primary failure) or they
can develop severe adverse reactions. In those cases, the
rheumatologist can decide to go directly from etanercept
(A) to tocilizumab (G) and switch the drug class earlier.
This example shows a direct meaningful interpretation of
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Table 2 Stability of the 25 clusters for Ward’s method, g = 0.7, and Tp = 0.25

Cluster Nb. τ ∗ η∗ γ ∗ τ ∗ η∗ γ ∗ τ ∗ η∗ γ ∗
(# patients) median median median average average average std std std

1 (4) 0.475 0.298 0.625 0.475 0.298 0.625 0.389 0.185 0.177

2 (4) 0.750 0.429 0.750 0.750 0.429 0.750 0.000 0.000 0.000

3 (5) 0.083 0.077 0.200 0.083 0.077 0.200 0.000 0.000 0.000

4 (5) 0.400 0.271 0.600 0.400 0.271 0.600 0.283 0.147 0.000

5 (5) 0.275 0.215 0.500 0.275 0.215 0.500 0.035 0.022 0.141

6 (6) 0.833 0.455 0.833 0.833 0.455 0.833 0.000 0.000 0.000

7 (7) 0.741 0.423 0.786 0.741 0.423 0.786 0.164 0.054 0.101

8 (7) 0.307 0.233 0.500 0.307 0.233 0.500 0.080 0.047 0.101

9 (7) 0.643 0.390 0.643 0.643 0.390 0.643 0.101 0.037 0.101

10 (8) 0.688 0.407 0.688 0.688 0.407 0.688 0.088 0.031 0.088

11 (9) 0.542 0.347 0.611 0.542 0.347 0.611 0.177 0.075 0.079

12 (9) 0.389 0.269 0.444 0.389 0.269 0.444 0.236 0.124 0.157

13 (10) 0.352 0.256 0.400 0.352 0.256 0.400 0.145 0.080 0.141

14 (10) 0.489 0.311 0.550 0.489 0.311 0.550 0.337 0.156 0.354

15 (13) 0.513 0.330 0.577 0.513 0.330 0.577 0.254 0.112 0.163

16 (13) 0.472 0.321 0.577 0.472 0.321 0.577 0.039 0.018 0.054

17 (14) 0.571 0.358 0.571 0.571 0.358 0.571 0.202 0.082 0.202

18 (16) 0.719 0.416 0.719 0.719 0.416 0.719 0.133 0.045 0.133

19 (17) 0.309 0.235 0.353 0.309 0.235 0.353 0.084 0.049 0.083

20 (19) 0.716 0.416 0.737 0.716 0.416 0.737 0.119 0.041 0.149

21 (20) 0.791 0.440 0.825 0.791 0.440 0.825 0.154 0.048 0.106

22 (32) 0.696 0.410 0.719 0.696 0.410 0.719 0.056 0.019 0.088

23 (37) 0.791 0.441 0.811 0.791 0.441 0.811 0.104 0.032 0.076

24 (46) 0.728 0.420 0.728 0.728 0.420 0.728 0.108 0.036 0.108

25 (101) 0.777 0.437 0.777 0.777 0.437 0.777 0.007 0.002 0.007

Fig. 4 Standard deviation of Adjusted Rand (AR) versus the number of clusters. Standard deviation of AR versus number of clusters for dendrogram in
Fig. 3. There is a downward trend of the standard deviation when increasing the number of clusters. The minimum value is attained with 25 clusters
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Fig. 5 Cluster Visualization. Graph representation of selected clusters based on stability measures and clinical interpretation. Drug codes: A -
Etanercept; B - Infliximab; C - Rituximab; D - Adalimumab; E - Anacinra; F - Abatacept; G - Tocilizumab; H - Golimumab. Z - Follow-up/end

the obtained clusters from a medical point of view and
highlights the advantages of patient stratification using
longitudinal data.

Conclusions
We propose the AliClu, a method that combines tem-
poral sequence alignment and agglomerative hierarchical
clustering to find groups in longitudinal data containing
sequences of symbols and numeric values. The AliClu
includes a clustering validation strategy based on boot-
strapping and uses several clustering indices, such as the
(adjusted) Rand, Fowlkes–Mallows, Jaccard, and adjusted
Wallace, to choose the best number of groups to consider
for each particular dataset. The stability of the obtained
clusters is then assessed through resampling and by using
the Jaccard index, the recovery rate, and the Dice indices
coefficient. The AliClu can either be run entirely auto-
matically or in a semi-automatic way, which requires user
input regarding the chosen parameters. The final clus-
ters are depicted in graphs where each node represents a
symbol, each edge (a state switch) has one number corre-
sponding to the median time, and the weight represents
the estimated conditional probability of switching.
The AliClu was tested using synthetic data generated

with continuous-timeMarkov chainmodels, whichmakes
it possible to separate the sequences generated with differ-
ent parameters. The AliClu was run using the Portuguese
Rheumatic Diseases Register (Reuma.pt), the national
database for all the rheumatic patients treated with bio-
logic agents. In particular, the rheumatoid arthritis (RA)
patients’ therapy information, including the sequence of
drugs taken and their durations, was used as the input.

The procedure allowed us to stratify RA patients in a
clinically relevant way by creating groups of similar treat-
ment profiles. The clusters obtained depict the treatment
switches between different drugs, their median duration
times and their probabilities.
The AliClu provides a strategy setting, validation, and

visualization procedure for the automatic clustering of
temporal sequence data, and it has promising applications
for patient stratification using electronic medical record
(EMR) data.

Availability and requirements
Project name: AliClu
Project home page: https://github.com/sysbiomed/
AliClu
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Programming language: Python
Other requirements: Python3 (in Linux or Windows)
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License: Free
Any restrictions to use by non-academics: None
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