
 

A national genome wide association study to predict the response to treatment 
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Proponents - Helena Canhão and João Eurico Fonseca 

 

Participants - All the rheumatology centers are invited to participate. 

 

Co-authors (from participating centers) - 2 authors from HEM, HUC, HGO, HSJ, 
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1 author from each participating small center. 

From laboratory and bioinformatics work: Robert Plenge, Daniel Solomon, Eli 

Stahl, Diana Fernandes and Fernando Martins. 

 

Duration - 4 years 

 

INTRODUCTION 

Rheumatoid arthritis (RA) is the most prevalent inflammatory chronic joint 

disease, affecting ~1% of the population worldwide. It is characterized by 

sustained inflammation that leads to joint destruction, disability and increased 

morbidity and mortality.  

In the last 10 years more effective therapies have emerged and although not 

curative, they showed the ability to suppress inflammation and arrest structural 

damage. 

Drugs that block tumor necrosis factor (TNF) are currently the first choice for 

treatment in patient refractory to methotrexate and other conventional disease 

modifying anti-rheumatic drugs (DMARDs). Despite anti-TNF have proven their 

efficacy and safety in a large proportion of patients, ~30% of RA patients fail to 

respond or show toxicity, delaying inflammation control with the subsequent 

development of erosions and irreversible joint damage. In addition, in clinical 

practice, only ~20% of RA patients achieve remission with this drug's treatment 

which eventually leads to switch to other class of biological drugs, targeted to 

different cytokines or cells.  



Long-term outcome in patients with RA is highly dependent upon aggressive 

pharmacological control of inflammation early in the disease course. Despite the 

importance of selecting the optimal medication soon after disease onset, there 

is no validated biomarker predictor of severity neither of drug treatment 

response. As a consequence, RA patients often suffer irreversible joint 

destruction while a physician searches for an effective drug combination.  

A genetic biomarker would be particularly useful for drugs that block the 

inflammatory cytokine TNF, as these drugs are first-line biological DMARDs yet, 

as said before, induce remission in only ~20% of patients. 

The absence of genetic biomarkers for RA susceptibility, prognosis severity and 

for predicting response to anti-TNF therapy is largely due to limitations in 

conducting and interpreting genetic studies. 

Very few genetic studies of response to anti-TNF therapy have been conducted, 

and there is no single nucleotide polymorphism (SNP) that reproducibly predicts 

response.  

A handful of candidate gene studies, based on RA susceptibility alleles and 

known biology of the TNF pathway, have been conducted. These studies 

suggest the MHC region may be important in predicting response to anti-TNF 

therapy, although this effect is not observed in all populations. 

Furthermore, no single allele within the MHC was associated across all studies.  

We have performed one of these studies evaluating 22 infliximab treated 

patients at 24 weeks and we found a better response in patients with the -308 

GG alleles (JE Fonseca et al. Ann Rheum Dis 2005).  

Important limitations of published genetic studies of TNF treatment outcome are 

the small sample size and the heterogeneous definition of treatment and of 

treatment response. Some studies used a quantitative change in the DAS28 

(delta-DAS before and after treatment), others have used the EULAR response 

criteria, and yet others have used the ACR response criteria. Some studies 

have focused on patients who have received anti-TNF therapy for the first time, 

while other studies allowed patients treated with multiple anti-TNF agents and 

other biological DMARDs. These variable definitions make it difficult to combine 

results across studies. 

However in the last years new techniques have emerged and a huge advance 

in genetic and genomic research has occurred. 



It is increasingly practical to test systematically common genetic variants for 

their role in disease – genome-wide association studies (GWAS) – but this has 

not yet been done in a large collection of RA patients treated with anti-TNF 

therapy. Common SNP variants (i.e., those present at a population frequency 

>1%) explain much of the genetic diversity in our species, a consequence of the 

historically small size and shared ancestry of the human population. There are 

approximately 10 million common SNPs in the human genome. GWAS of 

common variants are now feasible due to an improved understanding of linkage 

desequilibrium (LD) structure across the human genome, technical capacity to 

genotype hundreds of thousands of SNPs, and methods to analyze large 

datasets. GWAS have a distinct advantage over previous genetic studies in that 

they are able to test, in an unbiased manner, the majority of common variants 

across the genome in a single experiment. Implementation of GWAS has 

greatly expanded the number of true positive loci (i.e., those that have been 

replicated consistently in more than one study at a high level of statistical 

confidence) that are associated with complex traits. Only a small GWAS of 89 

patients has been conducted in RA patients to address the response to therapy. 

It is now clear from several studies of the genetic basis of RA that the vast 

majority of individual common DNA variants associated with complex traits are 

of modest effect size. Most individual SNPs increase risk of disease by only 

~10% (corresponding odds ratio (OR) of ~1.10). As a consequence, thousands 

of patient samples are required to achieve convincing statistical evidence in 

favor of a true positive association at a stringent level of significance (e.g., 

P<5x10-8) for a single SNP. Even then, validated SNP associations explain 

only a small fraction of the genetic contribution to variance of most complex 

traits. For some complex traits, where sample size is limited – for example, 

response to anti-TNF therapy – there are no validated SNP associations.  

Thus a critical question remains: what fraction of the variance is explained by a 

polygenic model, where many common alleles of modest effect size contribute 

to the phenotype?  

The answer to this question will (a) provide insight into the genetic architecture 

of complex traits such as response to anti-TNF therapy (which will in turn guide 

future genetic studies), and (b) facilitate predictive modeling in a clinical setting. 

In this application we consider a novel approach: to combine data across 



multiple SNPs to improve power – effectively creating an aggregate score for all 

SNPs. This approach will provide estimates of the amount of variation in 

response to anti-TNF therapy that can be explained by common alleles of 

modest effect size. 

 

HYPOTHESIS  

Common alleles of modest effect predict the response to anti-TNF therapy. 

 

AIMS 

General aim: Conduct a replication GWAS on ~500 Portuguese RA patients 

treated with anti-TNF therapy selected from the national database from the 

Portuguese Society of Rheumatology (BioRePortAR)  

 

Specific aims: 

a) Generate and analyze GWAS data on ~500 Portuguese RA patients to 

search for common SNPs that predict response to anti-TNF therapy. 

 

b) Develop a clinical prediction model of response to treatment using aggregate 

SNP data. 

 

METHODOLOGY 

We will include 500 patients from BioRePortAR, the national database for 

biological therapies developed by the Portuguese Society of Rheumatology.  

This database is a structured, codified electronic medical record linked to a 

database. At least every 3 month patients are observed in a specialized and 

certified center - the rheumatology day care unit - and information related to 

disease activity, functional status, adverse events and current treatment are 

collected and  introduced in BioRePortAR. 

Blood samples to extract DNA will be collected from eligible patients, processed 

and stored at -80º in the Biobank of SPR located at IMM.  

According to the Portuguese recommendations to start biological therapy in RA 

patients, the patient should have active disease prior to start an anti-TNF drug 

(DAS28 >3.2) and should be refractory to methotrexate therapy. In addition, we 



will establish strict inclusion criteria to minimize heterogeneity across sample 

collections. These criteria are: 

(1) EULAR “good responder” or “non responder”; the first given by a delta 

DAS28>1,2 and a current DAS28<3,2; and non-responders showing a delta 

DAS28<0,6 or <1,2 if the baseline DAS28 was higher than 5,1.  

(2) First ever use of an anti-TNF drug; this will remove the bias that may be 

present among patients who initially responded to treatment, but then become 

secondary non-responders, and from those that never responded, representing 

primary failures. 

 (3) Data on post treatment DAS28 evaluated at 3 months and, if the patient is a 

responder, the evaluation should be extended up to 12 month; this will assure 

that accurate response data are available within a consistent time frame to 

assess primary response and to detect secondary failures.  

In particular, we have chosen to focus on those patients that are either „good 

responders‟ or „non-responders‟ according to EULAR criteria, meaning that we 

will exclude those patients classified as EULAR „moderate responders‟. We 

hypothesize that selecting more extreme phenotypes will add statistical power 

to detect a true result, as (a) genetic factors that influence response will be 

enriched in the more extreme categories, and (b) accuracy of disease activity 

measurements is much higher at more extreme phenotypes.  

Moreover, good response is important clinically, as a different drug would likely 

be chosen in patients with a lower probability of having a response. 

The samples will be genotyped with the Illumina platform, which contains 

660,000 SNPs. The Illumina 660W array captures >85% of known common 

genetic variation potentially relevant for immune mediate diseases, as assessed 

using HapMap. 

We will test for potential clinical confounders using univariate and multivariate 

analyses. Any clinical predictor that is significant at p<0.05 will be included as a 

covariate in our regression models. 

We will use multivariate logistic regression to assess the significance of a SNP 

predicting response category, including age, sex, and concurrent MTX as 

covariates. Other factors such as the type of anti-TNF (etanercept, infliximab or 

adalimumab), disease duration and pre-treatment DAS will be also evaluated.  



We will correct for multiple tests by permutation, and adjust for potential 

population stratification using EIGENSTRAT.  

The GWAS will be conducted under the supervision of Dr Robert Plenge 

(Harvard Medical School, Boston, USA) who has a large experience in 

conducting this kind of genetic studies in RA.  

 

Aggregate genetic risk scores (GRS) 

The classic theory of polygenic inheritance, described by Fisher in 1918 and 

supported empirically by recent GWAS results, implicates a large number of loci 

of very small individual effects that collectively account for a substantial 

proportion of phenotypic variation. In the early 1900s, geneticists noted that 

most naturally occurring trait variation, while showing strong correlation among 

relatives, involves the action of multiple genes and non-genetic factors. 

Recently, GWAS has provided empirical support for these early observations: 

very few diseases have common alleles of large effect size (e.g., OR >3), and 

those alleles reproducibly associated with phenotypic variation have modest 

effect size (OR 1.1 – 1.3). However, the exact number of loci that contribute to 

trait variation is not clear, and could represent thousands of independent alleles 

of even smaller effect (OR~1.05). In order to achieve genome-wide significance 

after correcting for the number of common alleles in the human genome, 

thousands of patients are required. Even then, validated SNP associations 

explain only a small fraction of the genetic contribution to variance of most 

complex traits. For some complex traits, where sample size is limiting, there are 

no validated SNP associations. 

Thus, how is it possible to test the polygenic model, especially in the absence of 

very large sample sizes or in the absence of a large number of variants that are 

genome-wide significant? 

A study led by Drs. Karlson and Plenge from Harvard Medical School 

developed a simple aggregate genetic risk scores to quantify risk of RA (ARD 

2010).  

We describe this study briefly to provide a context for the conventional 

approach to aggregate genetic risk scores: to model only those SNPs that are 

genome-wide significant.  



In this study, the authors examined known RA susceptibility alleles, all of which 

were independent predictors of risk. At the time they initiated the study, there 

were 14 validated non-MHC SNPs, in addition to 8 MHC alleles. They created a 

weighted genetic risk score for 22 alleles (wGRS22), where the weight for each 

risk allele is the log of the published odds ratio. In an ordinal model of the 

highest vs. lowest risk categories, they observed an OR of RA between 6.24 

and 12.31.  

Other authors have used aggregate SNP data from GWAS to demonstrate that 

a polygenic model of inheritance underlies a substantial proportion of risk in 

patients with schizophrenia and bipolar disease (Nature 2009).  

While GWAS data are generally used to test the role of individual variants, it is 

also possible to use GWAS data to test whether a large number of SNPs of 

small effect contribute to trait variation, as proposed by Fisher in 1918. 

The estimate that common polygenic variation accounts for one-third of the total 

variation in schizophrenia risk should be thought of as a lower bound for the 

true value, which could be much higher. In summary, these statistical methods 

use GWAS data to predict disease risk, even for those SNPs that do not reach 

a conservative genome-wide level of significance. This approach allows one to 

estimate the variance explained by common SNPs. 

 

Genotyping will occur in three steps:  

(1) DNA preparation. We will determine the exact concentration of the DNA 

samples using a Picogreen assay. Picogreen measures double stranded DNA 

and is a much better predictor of genotyping success than other quantitation 

methods. We will normalize all samples to 50 ng / ul.  

(2) DNA fingerprinting. We will assign a unique genetic „fingerprint‟ to each 

sample to ensure DNA plate integrity and sample identity throughout: we will 

use the Sequenom iPLEX platform to genotype a panel of 24 highly 

polymorphic SNPs that overlaps SNPs on the Illumina array. We will obtain a 

new aliquot of DNA from any sample that does not pass these QC steps.  

(3) GWAS genotyping. Approximately 750 ng of genomic DNA will be used to 

genotype each sample. Briefly, each sample is whole-genome amplified, 

fragmented, precipitated and resuspended in appropriate hybridization buffer. 



Denatured samples are hybridized on prepared Illumina 660W-quad beadchips 

for a minimum of 16 hours at 48°C. Following hybridization, the beadchips are 

processed for the single base extension reaction, signal amplification and 

imaged on an Illumina Bead Array Reader. Normalized bead intensity data 

obtained for each sample are loaded into the Illumina Beadstudio 2.0 software, 

which converts fluorescent intensities into SNP genotypes.  

The following steps will be performed by Dr. Eli Stahl (BWH) and Diana 

Fernandes (IMM), under the guidance of Dr. Plenge: (1) Quality control filters. 

We have established strict quality control criteria based on empirical data to 

minimize bias due to genotyping artifact. Within the cohorts, all individuals with 

>5% missing genotype data and SNPs with >5% missing genotype and/or 

deviation from Hardy-Weinberg Equilibrium (p<10-5) will be excluded from 

analysis in the GWAS. In addition, we will apply identity-by-descent (IBD) 

probabilities to capture expected and unrecognized relationships among 

samples. Examination of these values can identify sample contamination, 

unexpectedly close relationships between individuals (for example, cousins or 

siblings), and unanticipated duplicate samples. We will use PLINK as our 

primary tool to manage our GWAS data.  

(2) Population stratification. Having applied strict QC filters, we will next analyze 

the extent of population stratification by determining the amount of statistical 

inflation, and correct for population stratification using a principal components 

method. Despite the majority of samples being self-identified European ancestry 

in the samples collected to date, some degree of population stratification may 

still be undetected (including patients with missing information about race). To 

correct for population stratification, we will run Eigenstrat, remove genetic 

outliers, and calculate the top 10 eigenvectors in the dataset. The eigenvectors 

will be used as covariates in our multivariate logistic regression model. 

(3) Imputation of all CEU HapMap SNPs. We will use IMPUTE 100 to determine 

genotype calls and confidence scores for all polymorphic CEU HapMap SNPs. 

This will facilitate the analysis of common SNPs across the genome not 

genotyped directly. To impute all CEU HapMap SNPs, we will conduct separate 

runs for each chromosome using default IMPUTE parameters. All computations 

will be performed on the Broad Institute Load Sharing Facility (Boston, USA).  



(4) GWAS of genotyped and imputed SNPs. Our primary analysis will test 

whether a SNP is associated with a dichotomous outcome, classifying patients 

as either “Good Responders” or “Non-Responders”, accordingly to EULAR 

criteria described above. We will use multivariate logistic regression, where 

eigenvectors and clinical factors are included as covariates. We will use dummy 

variables to account for unknown confounders.  

For any SNP directly genotyped, the actual genotype count will be used in our 

analysis. If a SNP is imputed, then we will use probabilistic allele dosages. This 

approach accounts for some uncertainty in imputation, and avoids potential bias 

of estimating an exact genotype call per individual.  

 (5) Interpret statistical significance. A major goal of this analysis is to find a „big 

hit‟ – an allele of large effect (OR>1.5) that is associated with severity and/or 

response to anti-TNF therapy with high statistical certainty (at p<5x10-8).  

The only GWAS of response to anti-TNF therapy published to date was in fewer 

than 100 patients. Thus, it is possible that such an allele does indeed exist, as 

has been shown for the MHC and risk of RA. For any single SNP, we will 

consider a p<5x10-8 as genome-wide significant, given the number of 

independent tests in the human genome. We have >80% power to detect 

common variants with odds ratios (OR) >1.5. 

We will control for clinical variables that may confound our analysis by including 

covariates in our analysis. Although clinical trials suggest that treatment 

response to anti-TNF therapy does not vary according to disease duration, CCP 

or RF status, or prior DMARD failure, we will be sure to assess these variables.  

At the end of this analysis, we will have conducted a GWAS of treatment 

response for individual SNPs. Based on our sample size, we have power to 

detect common variants with OR>1.5. 

 

Aggregate genetic risk score analysis of GWAS data 

Even if an allele(s) is identified, it is exceedingly unlikely that this will account for 

most of the variance in treatment response. Therefore, a critical question 

remains: what fraction of the variance is explained by a polygenic model, where 

many common alleles of modest effect size contribute to treatment response? 

To address this critical question with empirical data, we will apply methods 

recently developed and described above. 



We will subset our GWAS data into target and discovery samples, and test the 

predictive value of SNPs at varying levels of statistical significance. This will 

occur in 4 steps:  

(1) Divide dataset in half (discovery & target): we will randomly select 

approximately half of the responders and non-responders as the discovery 

group, and the other half as the target group. This approach is feasible because 

we have focused on categorical response criteria, rather than using DAS as a 

continuous trait.  

(2) Filter SNPs: We will prune our GWAS data to have a set of high-quality 

autosomal SNPs that are in linkage equilibrium (LE). We will select autosomal 

SNPs with a total sample MAF of 2% or greater and a genotyping rate threshold 

of 99% or greater; we will not use imputed SNPs in this analysis. We will next 

prune the SNP panel to remove SNPs in strong linkage disequilibrium with other 

SNPs (based on a pairwise r2 threshold of 0.25, within a 200-SNP sliding 

window). Focusing these analyses on a subset of SNPs in approximate linkage 

equilibrium has several advantages and makes interpretation more 

straightforward, for example, the calibration of results with simulated data and 

the comparison of results across the frequency spectrum, but most importantly 

to ensure the score represents the aggregate effect of a large number of 

independent SNPs. Focusing on autosomal SNPs avoids the issue of how to 

score haploid and diploid genotypes in males and females without creating 

artificial mean differences between the sexes. We will evaluate coverage of the 

pruned dataset based on mean-max r2 in CEU HapMap 181.  

(3) Create score in discovery samples: We will conduct a GWAS in the 

discovery samples for SNPs that predict response to anti-TNF therapy, as 

described above. Each SNP will be assigned a weight based on the log of the 

odds ratio. We will develop an aggregate score using 11 overlapping sets of 

SNPs: all SNPs with PT <0.01, PT < 0.05, PT < 0.1, PT < 0.2, PT < 0.3, PT < 

0.4, and PT < 0.5; for some analyses we will also consider sets excluding the 

most highly associated SNPs, 0.01 < PT < 0.2, 0.05 < PT < 0.2, 0.05 < PT < 0.5 

and 0.2 < PT < 0.5. The score is expressed as the mean score per SNP in the 

set; the number of non-missing genotypes used to calculate each score will also 

be record per individual, for use as a covariate in subsequent target sample 

analysis.  



(4) Test score in target samples. We will test for association between the score 

and treatment response in the target samples. The primary target sample test 

uses a logistic regression of disease state on score. Critical non-clinical 

covariates include the number of non-missing genotypes of all SNPs used to 

calculate the score, to control for potential differences in genotyping rate 

between cases and controls. Study sample is taken into account by inclusion of 

dummy-coded covariates to represent the strata. We will also consider clinical 

covariates. Study sample is also accounted for in all discovery sample 

analyses, by use of a Cochran-Mantel-Haenszel stratified analysis to calculate 

the common odds ratios. In the target sample logistic regression analysis, we 

estimate the variance explained in treatment response by the score as the 

difference in the Nagelkerke pseudo R-squared from a model including the 

score and covariates versus a model including only the covariates. All tests 

reported are two-sided. 

We will report significant associations relative to the direction in the discovery 

set, such that a higher score is associated with an increased treatment 

response rate.  

(5) Interpret statistical significance. We will consider a polygenic model with 

p<0.004 as significant, given the 11 overlapping sets of SNPs we will test 

(conservative Bonferroni correction). If we do not observe this level of 

significance, then we will perform secondary analyses to consider non-genetic 

sources of variation: phenotype definition of treatment response (we are 

analyzing our clinical data as a dichotomous categorical trait); drug-specific 

effects (three anti-TNF drugs, two general drug classes) and influence of known 

confounding variables (e.g., concurrent medication). If we cannot identify any 

obvious nongenetic explanation, then we will conclude that common SNPs do 

not contribute substantially to response to anti-TNF therapy in patients with RA. 

(6) Replication. We will replicate our findings, as these studies will also be done 

in USA patients applying the same methodology. 

Based on data from schizophrenia and simulations in 600 responders and 600 

nonresponders we calculate that we have >95% power to detect a polygenic 

association at p<0.004 if common SNPs contribute at least 50% to the variance 

in treatment response. We also note that we have ~10% power at this same p-



value threshold if common SNPs explain 10% of variance and 50% power to 

explain 30% of the variance.  

Upon completion with the American patients we will have >80% power at 

p<0.004 to detect a signal if common SNPs explain 20% of variance. Thus, if 

we fail to detect a polygenic signal, then this suggests either that common 

SNPs do not contribute substantially to variation in treatment response, or that 

our method of defining treatment response (e.g., responders vs. non-

responders) is too noisy. In this context, a negative result would provide great 

insight into genetics of anti-TNF therapy. 

To gain insight into the percent variance explained, we will perform simulations 

based on our observed data. The steps include:  

(1) simulate discovery and target datasets that are comparable to those used in 

this study, under a variety of genetic models;  

(2) repeat the score analyses across a range of PT thresholds for each pair of 

simulated discovery/target datasets, in order to identify models that produce 

profiles of results similar to the real data in terms of variance explained by the 

score, R2; and  

(3) calculate the implied variance explained by the subset of true risk alleles 

from the selected model.  

Considering the number of variants and their average effect size, there will be 

many different combinations, all other things being equal, which lead to the 

same variance explained. For example, 5% of the additive genetic variance 

could be accounted for by: 5 loci that each explain, on average, 1% of the 

variance; 50 loci that each explain, on average, 0.1% of the variance; 500 loci 

that each explain, on average, 0.01% of the variance. 

To assess the robustness of our score under different clinical conditions, we will 

define and test different discovery and target groups. As a secondary analysis, 

we will divide our dataset according to class of anti-TNF therapy 

(infliximab/adalimumab) vs. the other (etanercept), and ask how well a score 

defined in one class predicts response in the other, and vice versa. Also, we will 

divide our collections in other ways: new-onset and long-standing disease; 

patients collected in Portugal vs. those collected in the United States and male / 

female gender. 

 



 

ETHICAL ISSUES AND FUNDING 

The project will be developed at a National level, involving all the Portuguese 

rheumatology centers which agree to participate. 

BioRePortAR will be the clinical tool used. 

Part of the laboratory and bioinformatics work will be developed at Harvard 

Medical School, Boston, USA. 

The patients will be included after giving a written informed consent for all the 

study procedures. 

The study will be submitted to local ethics committee. 

The BioRePortAR was previously approved by Comissão Nacional de 

Protecção de Dados and by local ethics committees. 

The fund for the project will be obtained from the senior clinical award from 

Harvard Medical School - Portugal Program 2010-2014.    

    

TIMETABLE AND GENERAL TASK DESCRIPTION 

The total duration will be 4 years. 

Some tasks will be performed at local level and others at National level. Specific 

experimental work will be undertaken at Harvard Medical School, Boston, USA. 

Every center will recruit at least 50 RA patients. The patients will be registered 

in BioRePortAR in the beginning of the first anti-TNF treatment, in accordance 

to the routine clinical practice.  

A blood sample (whole blood and serum) will be drawn and sent to Instituto de 

Medicina Molecular for processing and assessment. The DNA extraction will be 

done at IMM and will be stored at -80ºC allocated to the SPR's national 

Biobank. 

The follow-up will be done in accordance to the national guidelines. None of the 

study procedures would modify the management usually performed to RA 

patients in daily clinical practice. No additional clinical procedures will be made 

as all the evaluations are routinely performed by the Rheumatology Centers as 

they registry the information in BioRePortAR. 

At 3 months a patient will be classified as non-responder, moderate responder 

or good-responder. If a moderate response occurs, the 6 months evaluation in 

BioRePortAR will be reviewed to capture late good-responders. For good-



responders all the information on disease activity captured in BioRePortAR will 

be assessed during the following 12 months to ensure a sustained response. 

The patients' recruitment and clinical assessment will take ~~2,5 years-3 years. 

The laboratory work will be done during ~6 month. 

Statistical analysis and manuscript preparation will be performed in the last 6 

month of the project. 

 

                


